Pergamon

Tetrahedron 58 (2002) 8073-8086

TETRAHEDRON

Cytotoxic and anti-HIV-1 constituents of *Gardenia obtusifolia* and their modified compounds

Patoomratana Tuchinda,^{a,*} Wilart Pompimon,^a Vichai Reutrakul,^a Manat Pohmakotr,^a Chalobon Yoosook,^b Natedao Kongyai,^b Samaisukh Sophasan,^c Kulawee Sujarit,^c Suchart E. Upathum^d and Thawatchai Santisuk^e

^aDepartment of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand ^bDepartment of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand ^cDepartment of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand ^dDepartment of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand ^cThe Forest Herbarium, Royal Forest Department, Phaholyothin Road, Bangkok 10900, Thailand

Received 30 May 2002; revised 19 July 2002; accepted 8 August 2002

Abstract— 5α -Cycloart-24-ene-3,23-dione (1), 5α -cycloart-24-ene-3,16,23-trione (2) and methyl 3,4-*seco*-cycloart-4(28),24-diene-29-hydroxy-23-oxo-3-oate (3), together with five known flavones 5,7,4'-trihydroxy-3,8-dimethoxyflavone (4), 5,7,4'-trihydroxy-3,8,3'-trimethoxyflavone (5), 5,7,4'-trihydroxy-3,6,8-trimethoxyflavone (6), 5,4'-dihydroxy-3,6,7,8-tetramethoxyflavone (7) and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (8) have been isolated from the leaves and twigs of *Gardenia obtusifolia*. The structures were assigned on the basis of spectroscopic methods. Compounds **3–8** and some of the modified compounds showed significant cytotoxic activities in several mammalian cell lines, especially **8** and its diacetate **21** which exhibited potent cytotoxicities (compound **8**: P-388 0.05 µg/mL, KB 0.09 µg/mL, BCA-1 0.63 µg/mL, Lu-1 0.09 µg/mL, ASK 0.70 µg/mL; its diacetate: P-388 0.27 µg/mL, KB 0.06 µg/mL, BCA-1 0.53 µg/mL). It was also found that **5**, **8** and **21** showed antimitotic activity in the ASK assay. Compounds **2**, **4**, **6**, **7** and some of the modified compounds displayed interesting anti-HIV activity in the syncytium assay, but were inactive or exhibited weak activity in the HIV-1 RT assay (99.9 % inhibition at 200 µg/mL), but cytotoxic in the syncytium assay. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

More than 80 species in the genus Gardenia (Rubiaceae) are widely distributed among the tropical forests in various parts of the world. Fifteen species of Gardenia were reported in Thailand.¹ Several species of Gardenia have been recorded to be used ethnomedically in various countries primarily for abortifacient² and contraceptive²⁻⁴ purposes. Some species are used as a febrifuge,⁵ for the treatment of headaches⁶ and as a larvicides.⁷ Extracts of various Gardenia species showing anti-implantation and abortifacient effects,⁸ as well as antiulcer,⁹ antibacterial,¹⁰ analgesic,¹¹ diuretic,¹¹ hypertensive¹¹ and larvicidal activity¹² have been previously reported. As part of our ongoing project on the discovery of new anti-cancer and anti-HIV agents from plants, several species of Gardenia have been collected from various parts of Thailand. Our previous work on *Gardenia coronaria* and *G. sootepensis*¹³

24-ene-3,16,23-trione (2), methyl 3,4-*seco*-cycloart-4(28),24-diene-29-hydroxy-23-oxo-3-oate (3); along with five known flavones 5,7,4'-trihydroxy-3,8-dimethoxyflavone (4), 5,7,4'-trihydroxy-3,8,3'-trimethoxyflavone (5), 5,7,4'-trihydroxy-3,6,8-trimethoxyflavone (6), 5,4'-dihydroxy-3,6,7,8-tetramethoxyflavone (7) and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (8) (Fig. 1). Compound 1 has been isolated previously from the stem bark of Monocyclanthus vignei,14 the bud exudates of Fijian Gardenia species¹⁵ and the leaves of Guarea trichilioides,¹⁶ while 2 and 3 are new compounds. For further structureactivity studies, the new cycloartane derivatives 9-15 and the known flavone derivatives 16-22 (Fig. 1) were prepared from the isolated compounds. The structures of all compounds were elucidated on the basis of spectroscopic methods. We herein describe the isolation, the modification and the determination of the structures, including their cytotoxic and anti-HIV activities. There have been no reports either on phytochemistry or biological activity of G. obtusifolia prior to our work.

has resulted in the isolation of four ring-A *seco*-cycloartane triterpenes. In this work, the chloroform fraction of *Gardenia obtusifolia* Roxb. was studied and led to the

isolation of 5α -cycloart-24-ene-3,23-dione (1), 5α -cycloart-

Keywords: cycloartane-3-one; ring-A *seco*-cycloartane; 3-methoxyflavone; cytotoxic activity; anti-HIV activity.

^{*} Corresponding author. Tel.: +66-2-2015159; fax: +66-2-2477050; e-mail: scptc@mahidol.ac.th

MeO₂C

HO 29

Ĥ

28

22

3

13A and **13B** $R = H_2$ **14A** and **14B** R = O

OMe

OMe

0

16 $R^1 = R^3 = R^5 = OAc, R^2 = R^4 = H$

19 $R^1 = R^2 = R^3 = R^5 = OMe$, $R^4 = H$

17 $R^1 = R^3 = R^5 = OAc$, $R^2 = H$, $R^4 = OMe$

18 $R^1 = R^3 = R^5 = OAc$, $R^2 = OMe$, $R^4 = H$

 R_2

 R_2

 $R^1 = R^3 = H, R^2 = R^4 = OH$ $R^1 = H, R^2 = R^4 = OH, R^3 = OMe$ $R^1 = OMe, R^2 = R^4 = OH, R^3 = H$ $R^1 = R^2 = OMe, R^3 = H, R^4 = OH$ $R^1 = R^2 = R^4 = OMe, R^3 = OH$ R₅ MeO MeO R₁ OMe R₁

HC

ΈĒ

20 $R^1 = R^3 = OAc, R^2 = H$ **21** $R^1 = R^2 = OAc, R^3 = OMe$ **22** $R^1 = R^2 = R^3 = OMe$

OMe

9 R = H₂

10 R = 0

15 R = O

Figure 1.

2. Results and discussion

Compound 1 exhibited $[M]^+$ peak at m/z 438 in the EIMS corresponding to a molecular formula C30H46O2. Its IR (CHCl₃) spectrum showed the absorption bands at $\nu_{\rm max}$ 1698 cm⁻¹ (for 6-membered ring ketone), 1683 cm⁻¹ (for conjugated ketone), and 1616 cm⁻¹ (for C=C). The ¹H NMR spectrum (Table 1) of 1 displayed a characteristic pair of doublets for cyclopropane methylene protons^{17–24} at δ 0.58 and 0.79 (1H each, d, J=4.3 Hz), as well as the three singlet signals for the four methyl groups of the cycloartanone-fused moiety at δ 0.91 (3H), 1.05 (6H) and 1.10 (3H), which suggested that 1 was a normal cycloartanonetype triterpenoid. Additionally, the presence of a terminal dimethylvinyl group connected to a carbonyl group in the side chain was characterized by the low-field shifts of the signal of an olefinic proton at δ 6.06 (m), and also the signals of two geminal vinylmethyls at δ 2.15 and 1.87 (d each, J=1.1 Hz), respectively. Apart from the singlets of four tertiary methyls, a doublet of a secondary methyl group was observed at δ 0.89 (J=6.3 Hz), which was referred to the

methyl at C-21. The fragmentation ions in the mass spectrum of **1** at m/z 438 [M⁺], 340, 125, 98, 83 (base peak) and 55 were useful in obtaining the structure of **1**.¹⁵ The presence of the carbonyl group and the unsaturation in the side chain was confirmed as evidenced by the fragment ions at m/z 125 for C₈H₁₃O⁺, 83 for C₅H₇O⁺ and 55 for C₄H₇⁺. The ions at m/z 340 and m/z 98 were the results of a McLafferty rearrangement involving the carbonyl group and the γ -hydrogen in the side chain. Compound **1** was finally proved to be 5 α -cycloart-24-ene-3,23-dione by direct comparison of its ¹H and ¹³C NMR (Table 1) spectral data with those reported in the literature.^{14–16} The results from 2D NMR experiments supported the assignments of protons and carbons in the structure (see Section 5 and Table 2).

The molecular formula of compound **2** was determined as $C_{30}H_{44}O_3$ by its EIMS which showed the molecular ion peak at m/z 452 [M]⁺. Compound **2** is clearly related to compound **1**, except that **2** has one extra carbonyl group in the structure. The IR (CHCl₃) spectrum of **2** exhibited three carbonyl stretching bands at 1727, 1700 and 1682 cm⁻¹

Position		$\delta_{C}{}^{b}$				
	1	2	3	1	2	3
1	(a) 1.85 (obsc.) (b) 1.53 (ddd 14, 6.5, 2.6)	(a) 1.89 (obsc.) (b) 1.56 (obsc.)	(a) 2.16 (obsc.) (b) 1.37 (obsc.)	33.41	33.13	28.90
2	(a) 2.71 (ddd, 14, 14, 6.4) (b) 2.30 (ddd, 14, 4, 3, 2.6)	(b) 2.72 (ddd, 13.9, 13.9, 6.3) (b) 2.32 (obsc.)	(a) 2.50 (obsc.) (b) 2.28 (ddd 15.5 11, 4.5)	37.44	37.30	31.55
3		-	-	216.50	215.99	174.50
4	_	_	_	50.21	50.15	152.38
5	1.71 (dd. 12.5, 4.6)	1.75 (dd. 12.2, 4.3)	2.53 (obsc)	48.42	48.30	42.07
6	(a) 1.56 (obsc.) (b) 0.95 (dddd, 12.5, 12.5, 12.5, 2.4)	(a) 1.62 (obsc.) (b) 0.97 (dddd, 12.6, 12.6, 12.6, 2.6)	(a) 1.67 (obsc) (b) 1.03 (obsc.)	21.47	21.27	28.85
7	(a) 1.39 (obsc.) (b) 1.14 (obsc.)	(a) 1.37 (obsc.) (b) 1.21 (obsc.)	(a) 1.30 (obsc.) (b) 1.06 (obsc.)	25.83	26.18	25.21
8	1.60 (obsc)	1.69 (dd, 12.3, 4.6)	1.56 (obsc.)	47.82	47.28	47.85
9	_	_	_	21.01	20.37	21.72
10	_	_	_	25.98	26.45	27.37
11	(a) 2.02 (obsc.)	(a) 2.16 (obsc.)	(a) 2.12 (obsc.)	26.66	26.20	26.85
	(b) 1.20 (obsc.)	(b) 1.28 (obsc.)	(b) 1.23 (obsc.)			
12	1.64 (obsc)	1.85 (obsc.)	1.66 (obsc.)	32.69	31.25	32.84
13	=	=	=	45.45	42.07	45.15
14	_	_	_	48.87	45.29	48.96
15	1.33 (obsc.)	(a) 2.07 (d, 18.5) (b) 2.01 (d, 18.5)	1.32 (obsc.)	35.51	50.90	35.58
16	(a) 1.90 (obsc.)	_	(a) 1.87 (obsc.)	28.34	219.26	28.24
	(b) 1.31 (obsc.)		(b) 1.30 (obsc.)			
17	1.66 (obsc.)	2.30 (obsc.)	1.63 (obsc.)	52.53	60.87	52.44
18	1.05 (s)	1.20 (s)	1.01 (obsc.)	18.12	18.95	18.19
19	(a) 0.79 (br d, 4.3, <i>endo</i>) (b) 0.58 (d, 4.3, <i>exo</i>)	(a) 0.86 (br d, 4.4, <i>endo</i>) (b) 0.65 (d, 4.4, <i>exo</i>)	(a) 0.73 (br d, 4.4, <i>endo</i>) (b) 0.48 (d, 4.4, <i>exo</i>)	29.53	30.04	30.20
20	2.04 (obsc.)	2.33 (obsc.)	2.04 (obsc.)	33.39	27.40	33.39
21	0.89 (d, 6.3)	0.99 (d, 5.7)	0.88 (d, 6.1)	19.29	20.21	19.28
22	(a) 2.51 (dd, 14.4, 2.3) (b) 2.12 (obsc.)	(a) 3.20 (m) (b) 2.34 (obsc.)	(a) 2.51 (obsc.) (b) 2.13 (obsc.)	51.72	49.98	51.67
23	_	_	_	201.52	200.71	201.59
24	6.06 (m)	6.11 (m)	6.06 (m)	124.40	124.40	124.32
25	_	_	_	154.61	154.27	154.67
26	2.15 (d. 1.1)	2.14 (d. 1.0)	2.14 (d. 1.3)	20.65	20.72	20.62
27	1.87 (d, 1.1)	1.88 (d, 1.3)	1.89 (d, 1.1)	27.65	27.60	27.63
28	1.05 (s)	1.06 (s)	(a) 5.11 (br dd, 2.9, 1.5) (b) 5.08 (br s)	22.17	22.15	110.37
29	1.10 (s)	1.11 (s)	4.14 (br s)	20.75	20.64	64.62
30	0.91 (s)	1.10 (s)	0.94 (s)	19.37	19.70	19.31
3-OMe	_	_	3.64 (s)	-	-	51.50

Table 1. 300 MHz ¹H- and 75 MHz ¹³C NMR data of cycloartanes 1–3 (CDCl₃)

^a Chemical shift given in ppm using TMS as internal reference; multiplicities and coupling constants (Hz) are given in parentheses; obsc.=obscured signal. ^b Chemical shift given in ppm; CDCl₃ signal at $\delta_{\rm C}$ 77.00 as reference.

corresponding to the C=O of 5-membered ring ketone, C=O of 6-membered ring ketone and C=O of conjugated ketone, respectively. In its ¹H NMR spectrum, the characteristic pair of doublets at δ 0.65 and 0.86 (J=4.4 Hz) in combination with the four singlets at δ 1.06, 1.10, 1.11 and 1.20 are compatible with those obtained for a cycloartane triterpene bearing a carbonyl group at C-3. The low-field shifts of the signals of H-15a, H-15b, H-17, H-20, H-21, H-22a and H-22b (δ 2.07, 2.01, 2.30, 2.33, 0.99, 3.20 and 2.34, respectively), comparable with the data of 1, supported the proximity of these protons to the C-16 carbonyl group (see Table 1). Compound 2 was suggested to have the same side chain as in 1. The fragment ions in the mass spectrum at m/z 354, 125, 98, 83 (base peak) and 55 were in accordance with those occurred in compound **1**. The similarity of the side chain as in 1 was confirmed by the lowfield signals of the vinyl proton at δ 6.11 (m) together with the two geminal vinylmethyls at δ 2.14 (d, J=1.0 Hz) and 1.88 (d, J=1.3 Hz). On the basis of 2D NMR spectral analyses (see Section 5 and Table 2), the chemical shifts in the ¹H and ¹³C NMR spectra (Table 1) were assigned.

Consequently, the structure of compound **2** was established as 5α -cycloart-24-ene-3,16,23-trione.

Compound 3 was obtained as a colorless oil. The IR $(CHCl_3)$ spectrum of **3** exhibited the absorption bands at 1681 cm⁻¹ (conjugated C=O stretching) and 1615 cm⁻¹ (C=C stretching) which suggested that $\overline{3}$ had a conjugated ketone in the structure. The EIMS of **3** showed the $[M]^+$ at m/z 484, corresponding to a molecular formula of C₃₁H₄₈O₄. The presence of the ion peaks at m/z 386, 125, 98, 83 (base peak) and 55 supported the same side chain as in 1 and 2. Compound **3** was characterized to contain an ester group by the observed C=O stretching band at 1729 cm⁻¹. The 13 C NMR spectral data at $\delta_{\rm C}$ 201.59 and 174.50 confirmed the presence of the conjugated carbonyl and the ester groups, respectively. The ¹H NMR data (Table 1) of compound **3** showed signals of C-19 methylene in the cyclopropane ring of a cycloartane triterpene (δ 0.48 and 0.73, d, J=4.4 Hz), along with the signals of two tertiary methyls (δ 0.94 and 1.01, s), one secondary methyl (δ 0.88, d, J=6.1 Hz) and two geminal vinylmethyls connected to a carbonyl group (δ

Table 2. Observed HMBC correlations in compounds 1-3

С	1 correlated H	2 correlated H	3 correlated H
1	2a, 2b, 5, 19a, 19b	2b, 5, 19a, 19b	2a, 2b, 5, 19a,
2	1a.1b	1a. 1b	1a.1b
3	1b, 2a, 2b, 28,	1a, 1b, 2a, 2b, 5, 28, 29	1a, 1b, 2a, 2b, 3-OMe
4	2a (w), 5, 28, 29	2a, 5, 28, 29	5, 28a, 28b, 29
5	1b, 6a, 6b, 7a, 19a, 19b, 28, 29	1a, 1b, 6a, 6b, 7a, 7b, 19b, 28, 29	1b, 6a, 7a, 7b, 19a, 19b, 28a, 28b, 29
6	5, 7a, 7b	5, 8	5, 7b, 8
7	5, 6a, 6b, 8	5, 8	6b, 8
8	1a (w), 6a, 7a, 11b, 15, 19a, 19b, 30	7b, 11b, 15a, 15b, 19a, 19b, 30	6a, 6b, 7a, 7b, 15, 19a, 19b, 30
9	1b, 5, 7a, 7b, 8, 11a, 11b, 19a, 19b	1a, 5, 7a, 7b, 8, 11a, 11b, 12, 19a, 19b	1a, 1b, 6a, 6b, 8, 12, 19a, 19b
10	1a, 1b, 2a, 2b, 5, 6a, 6b, 8, 19a, 19b	1a, 1b, 2a, 2b, 5, 6a, 8, 19a, 19b, 28 (w), 29 (w)	1a, 1b, 2a, 2b, 6a, 8, 19a, 19b
11	8, 12, 19a, 19b	8, 12	12, 19a, 19b
12	11a, 11b, 18	11a, 11b, 15, 17, 18	11a, 11b, 17, 18
13	11b, 12, 15, 16a, 17, 18, 30	8, 12, 15a, 15b, 18, 30	8, 11a, 12, 15, 16a, 16b, 17, 18, 30
14	8, 12, 16a, 16b, 17, 30	7a, 12, 15a, 15b, 17, 18, 30	8, 12, 15, 16b, 17, 18, 30
15	8, 16a, 16b, 17, 30	8, 17, 30	16b, 30
16	15	15a, 15b, 17	15, 17
17	12, 15, 18, 22a (w), 22b (w)	12, 18, 21, 22a, 22b	12, 15, 18, 22a, 22b
18	12, 17	12, 17	12, 17
19	1a, 1b, 5, 8,	1a, 5, 8, 11a,	1a, 5, 8, 11a,
	11a, 11b	11b	11b
20	17, 21, 22a, 22b	17, 21, 22a, 22b	16b, 17, 21, 22a, 22b
21	17, 22a, 22b	17, 20, 22a, 22b	17, 22a, 22b
22	21	17, 20, 21	21
23	20 (w), 22a, 22b, 24	22a, 22b, 24, 26 (w), 27 (w)	22a, 22b, 24, 27 (w)
24	26, 27	26, 27	26, 27
25	26, 27	26, 27	24, 26, 27
26	24, 27	24, 27	24, 27
27	24, 26	24, 26	24, 26
28	5, 29	5, 29	5, 29
29	5, 28	5, 28	5, 28a, 28b
30	8, 15	8, 15a, 15b	8, 15, 16b
3-OMe	-	_	2b

w=weak correlation.

2.14, d, J=1.3 Hz and 1.89, d, J=1.1 Hz). Furthermore, a broad doublet of doublets (δ 5.11, J=2.9, 1.5 Hz) and a broad singlet (δ 5.08) of an sp² methylene of H-28 signified a terminal double bond which exhibited allylic coupling with the two-proton broad singlet of H-29 at δ 4.14. Comparable with the analogous signals in compounds 1 and 2, the pair of doublets corresponding to H-19a and H-19b of compound 3 appeared shifted downfield. All of these data suggested a change in ring-B substitution pattern, which led to the proposal for 3 of a 3,4-*seco*-cycloartane structure with a primary alcohol group at C-29. Information from the ¹³C and DEPT-spectra indicated that one of the methylene carbons resonated at δ 64.62, providing a strong support for the primary alcohol unit. The presence of a carbomethoxy ester group in the structure was confirmed by the methyl

ester signals at $\delta_{\rm H}$ 3.64 (s, COOCH₃) and $\delta_{\rm C}$ 51.50 (COOCH₃). In general, the ¹³C NMR data correlated closely with our caronalolic acid previously isolated from *G. coronaria*,¹³ which differed from compound **3** only in the side chain and the methyl ester group at C-3. By complete analyses of these 2D NMR spectra (see Section 5 and Table 2) in combination with the ¹H and ¹³C NMR data (Table 1), compound **3** was identified as methyl 3,4-*seco*-cycloart-4(28),24-diene-29-hydroxy-23-oxo-3-oate (**3**).

In order to gain more information about the structureactivity relationship, the isolated cycloartanes 1 and 2 were modified as shown in Scheme 1. It was found that the side chain was easily hydrogenated (H₂, 10% Pd/C in MeOH) and gave the corresponding 9 and 10 in 95 and 96% yields, respectively. Compounds 9 and 10 were clearly proved to be the dihydro-derivatives of 1 and 2 as evidenced by their molecular ions at m/z 440 (for $C_{30}H_{48}O_2$) and 454 (for $C_{30}H_{46}O_3$), respectively, in the EIMS. The disappearance of the olefinic proton signal of H-24 in the ¹H NMR spectrum (Table 3) of each compound indicated that compounds 1 and 2 were completely hydrogenated. The correlations observed in the COSY (see Section 5) and HMQC spectra, in combination with the HMBC (Table 5) spectral data made the assignments of the chemical shifts in the ¹³C NMR spectra of 9 and 10 (Table 4) possible.

Since there have been few natural seco-cycloartanes reported and these compounds exhibited interesting biological activities, hence the oxidative transformation of ring A of the isolated cycloartanes was undertaken. The Baeyer-Villiger oxidation of cycloartanone 1 with MCPBA (1.1 equiv.) in CH₂Cl₂ at room temperature for 7 h afforded the heptanolide 11 (36% yield) and the heptanolideepoxides 13A, 13B (ratio 1:1.2) as an inseparable mixture of diastereomers (3% yield), along with the recovered starting material (24% yield). However, the oxidation reaction was completed by using 2.2 equiv. of MCPBA. Under these conditions, the heptanolide 11 and the inseparable diastereomers 13A, 13B (ratio 1:1.2) were isolated in 39 and 24% yields, respectively. Similarly, the Baeyer-Villiger oxidation of cycloartanone 2 with 1.1 equiv. of MCPBA gave the heptanolide 12, the inseparable diastereomers of heptanolide-epoxides 14A, 14B (ratio 1:1.3) and the recovered starting material in 46, 8 and 25% yields, respectively. The complete oxidation of 2 could also be achieved by treatment with 2.2 equiv. of MCPBA under the same conditions, and led to the formation of the heptanolide 12 (44% yield) and the inseparable diastereomers of heptanolide-epoxides 14A, 14B (ratio 1:1.3, 24% yield). The heptanolides 11 and 12 were determined to have one oxygen more than 1 and 2, respectively, by their EIMS at m/z 454 [M]⁺ for 11 $(C_{30}H_{46}O_3)$ and m/z 468 [M]⁺ for 12 $(C_{30}H_{44}O_4)$. The IR (CHCl₃) spectra of both compounds showed the absorption band corresponding to the C=O stretching of 7-membered ring lactone at 1702 cm^{-1} , while the C=O of 5-membered ring ketone in **12** absorbed at 1727 cm⁻¹. The ¹H and ¹³C NMR spectral data of 11 and 12 were quite similar to those of 1 and 2 with some differences observed in ring-A. With respect to the analogous signals observed in 1 and 2, the downfield shifts of the C-4 gem-dimethyl signals (H-28: $\delta_{\rm H}$ 1.40 for **11** and 1.42 for **12**; H-29: $\delta_{\rm H}$ 1.46 for **11** and 1.47

for 12) and of the C-28 signals in the ¹³C NMR spectra at $\delta_{\rm C}$ 31.01 for **11** and $\delta_{\rm C}$ 30.91 for **12** were due to the γ -effect of the C-5-C-6 bond and the C-3 carbonyl in the ring-A lactone. Other connectivities were confirmed by 2D NMR correlation experiments (see Section 5 and Table 5). Cycloartanes with 7-membered lactone in ring-A have been reported from natural sources, such as kadsudilactone isolated from Kadsura coccinea²² and root of Buxus papillosa.²⁵ The diastereomers A and B of heptanolideepoxides in 13 or 14 could not be separated from each other by chromatography; they were characterized as a mixture of diastereomers. Although the structure of each diastereomer of 13 possesses two carbonyl groups, the IR spectrum (CHCl₃) of the mixture shows only one C=O stretching band at 1703 cm⁻¹. In this case, the C=O absorptions of both 7-membered lactone and side-chain ketone appeared at the same position. The IR spectrum (CHCl₃) of 14A, 14B mixture exhibited one extra C=O absorption band at 1725 cm^{-1} , which was assigned to the absorption of 5membered ring ketone, while the C=O absorptions of 7membered lactone and the side-chain ketone were also observed as a strong band at 1706 cm^{-1} . The ratios of the diastereomers 13A/13B and 14A/14B were determined from the integration of the separated singlet signals of H-24 in the ¹H NMR spectra. The chemical shifts of other obscured signals in the ¹H NMR spectra of both mixtures were deduced from the correlation positions observed in the 2D-spectra (see Section 5 and Table 6).

The heptanolide **12** was used as an example for the synthesis of *seco*-cycloartane. The *seco*-cycloartane **15** was obtained in 80% yield by the cleavage of the heptanolide **12** with 1.1 equiv. of NaOMe in MeOH at room temperature for 6 h. The structure of **15** was confirmed by its spectral data. The

singlet of three protons at δ 3.66 and the carbon signal at δ 51.58 were referred to the methyl signals of the ester group. Information from the mass spectrum, which showed the fragment ion at m/z 59 (C₃H₇O⁺), confirmed the presence of the isopropanol group in the structure of **15**. All of the signals in the ¹H and ¹³C NMR spectra were completely assigned by analyses of the 2D NMR spectral data (see Section 5 and Table 5).

The relative stereochemistry of the isolated compounds 1-3 and their modified products 9-15 were determined by NOESY NMR experiments. The results are in agreement with the ROE correlations of nigranoic acid observed in the ROESY spectrum.¹⁸ The NOESY correlations observed are as shown in Fig. 2.

Compounds **4–8** are 3-methoxyflavone derivatives. The structures were identified by direct comparison of their melting points and spectral data to the values recorded in the literature.^{26–33} The acetylated and methylated derivatives **16–22** were prepared by using Ac₂O/4-dimethylaminopyridine (DMAP) at room temperature and Me₂SO₄/K₂CO₃ in acetone at reflux, respectively.

3. Bioassay evaluations

Pure compounds 1-22 were evaluated for cytotoxic effects against a panel of cultured mammalian cell lines.³⁴ The results including their antimitotic activities are as shown in Table 7. Moderate to high potency of cytotoxicities were found in compounds 3-8, 12, 20 and 21, while compounds 5, 8 and 21 exhibited antimitotic effects in the ASK assay. It should be noted that compound 8 and its diacetate 21

8077

Table 3. 300 MHz	¹ H NMR data of com	pounds $9-12$ and 15 (CDCl ₃)
------------------	--------------------------------	---

Position	$\delta_{ m H}{}^{ m a}$							
	9	10	11	12	15			
1	(a) 1.86 (obsc.) (b) 1.55 (obsc.)	(a) 1.89 (obsc.) (b) 1.56 (obsc.)	(a) 1.80 (obsc.) (b) 1.52 (obsc.)	(a) 1.85 (obsc.) (b) 1.57 (obsc.)	(a) 2.71 (obsc.) (b) 1.40 (obsc.)			
2	(a) 2.71 (ddd, 13.9, 13.9, 6.5) (b) 2.31 (obsc.)	(a) 2.72 (ddd, 13.8, 13.8, 6.5) (b) 2.34 (obsc.)	(a) 2.71 (obsc.) (b) 2.66 (obsc.)	(a) 2.73 (obsc.) (b) 2.69 (obsc.)	(a) 2.67 (obsc.) (b) 2.25 (obsc.)			
3	_	_	_	_	-			
4	_	_	_	_	_			
5	1.72 (dd. 12.3, 4.4)	1.76 (obsc.)	2.04 (obsc.)	2.12 (obsc.)	1.92 (obsc.)			
6	(a) 1.56 (obsc.) (b) 0.96 (obsc.)	(a) 1.62 (obsc.) (b) 0.98 (obsc.)	(a) 1.81 (obsc.) (b) 0.67 (obsc.)	(a) 1.86 (obsc.) (b) 0.71 (obsc.)	(a) 1.76 (m) (b) 0.72 (obsc.)			
7	(a) 1.39 (obsc.) (b) 1.14 (obsc.)	(a) 1.35 (obsc.) (b) 1.20 (obsc.)	(a) 1.32 (obsc.) (b) 1.08 (obsc.)	(a) 1.32 (obsc.) (b) 1.18 (obsc.)	(a) 1.26 (obsc.) (b) 1.10 (obsc.)			
8	1.61 (obsc.)	1.70 (obsc.)	1.43 (obsc.)	1.53 (obsc.)	1.43 (obsc.)			
9	_	_	_	_ ` `	-			
10	_	_	_	_	_			
11	(a) 2.04 (obsc.) (b) 1.18 (obsc.)	(a) 2.17 (obsc.) (b) 1.26 (obsc.)	(a) 2.06 (obsc.) (b) 1.09 (obsc.)	(a) 2.21 (obsc.) (b) 1.22 (obsc.)	(a) 2.24 (obsc.) (b) 1.30 (obsc.)			
12	1.65 (obsc.)	1.86 (obsc.)	1 69 (obsc.)	1.87 (obsc.)	1.85 (obsc.)			
13	_	_	_	-	-			
14	_	_	_	_	_			
15	1.34 (obsc.)	(a) 2.07 (d, 18.4) (b) 2.00 (d, 18.4)	1.34 (obsc.)	2.04 (br.s)	2.03 (br.s)			
16	(a) 1.88 (obsc.) (b) 1.31 (obsc.)	_	(a) 1.88 (obsc.) (b)1.31 (obsc.)	_	-			
17	1.64 (obsc.)	2.27 (obsc.)	1.64 (obsc.)	2.32 (obsc.)	2.30 (obsc.)			
18	1.03 (s)	1.18 (s)	1.03 (s)	1.17 (s)	1.16(s)			
19	(a) 0.80 (d, 4.1) (b) 0.59 (d, 4.1)	(a) 0.86 (d, 4.4) (b) 0.66 (d, 4.4)	(a) 0.66 (obsc.) (b) 0.61 (d. 4.9)	(a) 0.73 (d, 4.6) (b) 0.69 (d, 4.6)	(a) 0.75 (d, 4.8) (b) 0.61 (d, 4.8)			
20	(0) 0.39 (0, 4.1)	(0) 0.00 (u, 4.4)	(0) 0.01 (0, 4.9)	(0) 0.09 (0, 4.0) 2.34 (obsc.)	(0) 0.01 (u, 4.0)			
20	0.88(d.62)	0.07 (d. 5.0)	0.89 (d. 6.2)	2.34(00sc.)	2.32 (00sc.)			
22	(a) 2.44 (dd, 15.7, 2.2) (b) 2.14 (obsc.)	(a) 3.15 (m) (b) 2.38 (obsc.)	(a) 2.51 (dd, 14.7 , 2.3) (b) 2.12 (obsc.)	(a) 3.22 (m) (b) 2.35 (obsc.)	(a) 3.22 (m) (b) 2.31 (obsc.)			
23	-	-	-	(0) 2.55 (0030.)	(0) 2.51 (0030.)			
23	2.26 (obsc.)	2.30 (obsc.)	6.06 (m)	6.11 (m)	6.11 (m)			
25	2.20 (obsc.)	2.50 (obsc.)	-	-	0.11 (III) -			
25	0.92 (d. 6.7)	0.92 (d. 6.5)	216(d, 1, 0)	2 14 (d. 1 1)	214(d 1 1)			
20	0.92 (d, 0.7)	0.92 (d, 0.5)	1.89 (d, 1.1)	1.88 (d, 1.1)	$1.88 (d \ 1.1)$			
28	1.04 (s)	1.06(s)	1.09 (u, 1.1) 1.40 (s)	1.00 (u, 1.2) 1.42 (s)	1.00(u, 1.1) 1.25(s)			
20	1 10 (s)	1 11 (s)	1.46 (s)	1.47 (s)	1.23 (8)			
30	0.91 (s)	1.09 (s)	0.92 (s)	1.7(3) 1.12(s)	1.23(3) 1 12(s)			
3-OMe	_	-	-	-	3.66 (s)			

^a Chemical shift given in ppm using TMS as internal reference; multiplicities and coupling constants (Hz) are given in parentheses.

showed high potent cytotoxicity comparable to other compounds in Table 7.

All of the isolated and modified compounds were also tested employing HIV-1 reverse transcriptase (RT),³⁵ and a syncytium assay³⁶ using $^{\Delta Tat/Rev}MC99$ virus and 1A2 cell line system³⁷ (see Table 8). It was found that only 3 showed potent inhibitory activity (99.9% inhibition at 200 µg/mL) against HIV-1 RT (fagaronine chloride was used as a positive control³⁵). Some of the compounds were active in the $^{\Delta Tat/Rev}MC99$ syncytium assay, using AZT as a reference.³⁸ However, compounds 3, 5, 8, 12, 17, 21 and 22 were found to be very toxic to the cell lines used in this assay. It is noteworthy that compound 10, which was modified from the isolated 2, gave the best therapeutic index (TI>32.1; EC₅₀<3.9 µg/mL; IC₅₀>125 µg/mL) comparable with other compounds.

4. Conclusion

In conclusion, it is interesting to note that although the occurrence of cycloartane triterpenes and highly oxygenated

flavonol methyl ethers have been reported in several species of plants, compounds possessing significant cytotoxic and anti-HIV activities are particularly rare. To the best of our knowledge, the structure modification of the isolated cycloartanes to obtain better biological activities has not been attempted. Our work represents an example of an investigation of both chemical and biological aspects.

5. Experimental

5.1. General procedures

Mps: uncorr.; UV: EtOH or MeOH; IR: CHCl₃ or KBr. NMR spectra were recorded on a Bruker DPX 300 in CDCl₃ using TMS as an internal standard, otherwise stated; CC was carried out on silica 60, 70-230 mesh.

5.2. Plant material

The leaves and twigs of *G. obtusifolia* Roxb. (Rubiaceae) were collected from Chiang Mai Province of Thailand in March, 1996, and identified by one of us (T. S.). A voucher

Position	$\delta_{\rm C}{}^{\rm a}$							
	9	10	11	12	15			
1	33.36	33.11	30.17	29.79	29.90			
2	37.41	37.27	35.09	34.87	32.05			
3	216.58	215.98	175.46	175.20	174.91			
4	50.17	50.12	87.23	86.94	76.04			
5	48.36	48.25	49.83	49.61	45.10			
6	21.42	21.23	26.05	25.58	25.06			
7	25.78	26.14	25.38	25.64	26.00			
8	47.76	47.24	48.74	47.92	47.91			
9	20.94	20.31	23.01	22.19	21.87			
10	25.91	26.39	27.26	27.68	27.18			
11	26.59	26.14	27.27	26.77	26.20			
12	32.63	31.25	32.77	31.30	31.66			
13	45.37	42.03	45.03	41.97	42.21			
14	48.82	45.19	48.88	44.74	44.86			
15	35.42	50.87	35.75	51.00	51.39			
16	28.26	219.35	28.38	219.08	219.53			
17	52.25	60.65	52.56	60.73	60.93			
18	18.08	18.89	18.39	19.05	19.22			
19	29.48	30.00	29.61	29.86	31.38			
20	32.72	26.81	33.31	27.32	27.48			
21	19.36	20.39	19.35	20.02	20.03			
22	50.67	49.03	51.65	49.88	50.05			
23	211.30	210.51	201.46	200.63	200.78			
24	52.57	52.24	124.41	124.28	124.38			
25	24.49	24.60	154.66	154.32	154.26			
26	22.51	22.52	20.65	20.57	20.63			
27	22.63	22.62	27.64	27.55	27.60			
28	22.12	22.11	31.01	30.91	31.75			
29	20.71	20.70	23.11	22.98	26.16			
30	19.23	19.64	19.42	19.75	19.92			
3-OMe	-	-	-	-	51.58			

Table 4. 75 MHz ¹³C NMR data of compounds 9–12 and 15 (CDCl₃)

^a Chemical shift given in ppm; CDCl₃ signal at $\delta_{\rm C}$ 77.00 as reference.

specimen (BKF no. 092419) of *G. obtusifolia* has been deposited at the Forest Herbarium, Royal Forest Department, Bangkok, Thailand.

5.3. Extraction and isolation

The air-dried and finely powdered leaves and twigs of *G. obtusifolia* (7.9 kg) were successively extracted with methanol (75 L×21 days×5 times) at room temperature, followed by filtration. The filtrates were combined and evaporated to dryness under vacuum to afford a crude MeOH extract (1093 g). The methanol extract was suspended in water (1 L) and partitioned with CHCl₃ (5×2.5 L), EtOAc (3×2.5 L) and *n*-BuOH (2×2 L), respectively. Removal of solvents from each fraction yielded the CHCl₃ fraction (496 g), EtOAc fraction (31 g), *n*-BuOH fraction (196 g) and H₂O fraction (360 g), respectively.

The CHCl₃ extract (496 g) was subjected to a coarse separation on a silica gel column (1.8 kg), eluting with various proportions of CH₃COCH₃-*n*-hexane, followed by increasing amount of MeOH in CH₃COCH₃ and finally with MeOH. Fractions (500 mL each) were collected and combined on the basis of TLC behavior. Elution with 15% CH₃COCH₃-*n*-hexane yielded a fraction (115 g), which consisted of three compounds. Repeated column chromatography of this fraction (silica gel, CH₃COCH₃-*n*-hexane gradient) resulted in the isolation of three compounds. Further purification of the two isolated compounds by recrystallization gave colorless needles of 5α -cycloart-24-

ene-3,23-dione (1) (180.1 mg) and 5α -cycloart-24-ene-3,16,23-trione (2) (4.11 g). Another compound was isolated as a white semi-solid and identified as methyl 3,4-secocycloart-4(28), 24-diene-29-hydroxy-23-oxo-3-oate (3) (53.8 mg). Elution with 15-20% CH₃COCH₃-n-hexane led to the separation of a fraction (36.3 g). Repeated CC (silica gel, CH₃COCH₃-n-hexane gradient) afforded two flavones which were recrystallized with EtOH and identified as 5,7,4'-trihydroxy-3,8-dimethoxyflavone (4) (2.52 g) and 5,7,4'-trihydroxy-3,8,3'-trimethoxyflavone (5) (1.22 g). Elution with 20-30% CH₃COCH₃-n-hexane yielded a semi-solid mixture (29.3 g) of three compounds. Further separation by CC (silica gel, CH₃COCH₃/n-hexane gradient) followed by recrystallization from EtOH resulted in the isolation of 5,7,4'-trihydroxy-3,6,8-trimethoxyflavone (6) (1.30 g), 5,4'-dihydroxy-3,6,7,8-tetramethoxyflavone (7) (1.02 g) and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (8) (59.4 mg), respectively. Elution with 30-50% CH₃- $COCH_3$ -*n*-hexane yielded a gum (95.5 g). This fraction was further purified by CC (silica gel, CH₃COCH₃-n-hexane gradient) twice, followed by recrystallization from EtOH to give 7 (2.98 g) and 8 (572.4 mg).

5.3.1. 5α-Cycloart-24-ene-3,23-dione (1). Colorless needles from MeOH-CHCl₃, mp 135.8-136.0°C (Lit.¹⁴ 137-138°C). $[\alpha]_{589}^{26} = +7.29$ (c 0.85, CHCl₃) [Lit.¹⁴ $[\alpha]_D^{21} = +7$ (c 1.14)]. UV (EtOH) λ_{max} nm (log ε): 235 (4.76). IR (CHCl₃) ν_{max} : 1698 (C=O stretching of 6-membered ring ketone), 1683 (C=O stretching of conjugated ketone), 1616 (C=C), 1447, 1382, 1235, 1113, 1038, 973 cm⁻¹. ¹H and ¹³C NMR data: see Table 1. COSY correlations H/H: 1a/1b, 2a, 2b, 19a; 1b/1a, 2a, 2b; 2a/1a, 1b, 2b; 2b/1a, 1b, 2a; 5/6a, 6b, 19a; 6a/5, 7a, 7b; 6b/5, 7a; 7a/6a, 6b, 8; 7b/6a; 8/7a, 19b, 30; 11a/11b, 12; 11b/11a, 12; 12/11a, 11b, 18; 15/16a, 16b, 30; 16a/15, 16b; 16b/15, 16a; 17/16b, 18, 20; 18/12, 17, 30; 19a/1a, 5, 19b; 19b/5, 8, 19a; 20/17, 21, 22a, 22b; 21/17, 20, 22a, 22b; 22a/20, 21, 22b; 22b/20, 21, 22a; 24/26, 27; 26/24, 27; 27/24, 26. HMBC correlations: see Table 2. EIMS (70 eV) *m*/*z* (%): 438 [M]⁺ (3), 423 (1), 355 (1), 340 (13), 325 (3), 313 (3), 298 (1), 285 (1), 271 (1), 255 (1), 243 (1), 231 (1), 217 (2), 202 (5), 187 (5), 175 (5), 161 (5), 147 (21), 125 (56), 98 (42), 91 (13), 83 (100), 67 (12), 55 (42). Anal. calcd for C₃₀H₄₆O₂: C, 82.14; H, 10.57. Found: C, 81.93; H, 10.41.

5.3.2. 5α-Cycloart-24-ene-3,16,23-trione (2). Colorless needles from EtOAc, mp 173.0–173.8°C. $[\alpha]_{589}^{26} = -92.7$ (c 0.85; CHCl₃). UV (EtOH) λ_{max} nm (log ε): 236 (4.19). IR (CHCl₃) ν_{max} : 1727 (C=O of 5-membered ring ketone), 1700 (C=O stretching of 6-membered ring ketone), 1682 (C=O stretching of conjugated ketone), 1618 (C=C), 1448, 1385, 1243, 1114, 1037, 974 cm⁻¹. ¹H and ¹³C NMR data: see Table 1. COSY correlations H/H: 1a/1b, 2a, 2b, 19a; 1b/1a, 2a, 2b; 2a/1a, 1b, 2b, 29; 2b/1a, 1b, 2a, 28; 5/6a, 6b, 19a, 19b; 6a/5, 6b, 7a, 7b; 6b/5, 6a, 7a, 7b; 7a/6a, 6b, 7b; 7b/6a, 6b, 7a, 8; 8/7a, 7b, 15, 19a, 19b, 30; 11a/11b, 12, 19a, 19b; 11b/11a, 12, 19b; 12/11a, 11b, 18; 15a/15b, 17, 30; 15b/15a, 17, 30; 17/15a, 15b, 18; 18/12, 17; 19a/1a, 5, 8, 11a, 19b; 19b/1a, 5, 8, 11a, 11b, 19a; 20/21, 22a, 22b; 21/20, 22a, 22b; 22a/20, 21, 22b; 22b/20, 21, 22a; 24/26, 27; 26/24, 27; 27/24, 26; 28/2b, 5, 29; 29/2a, 28; 30/8, 15a, 15b. HMBC correlations: see Table 2. EIMS (70 eV) m/z (%): 452 [M]⁺ (1), 437 (16), 381 (8), 355 (2), 354 (<1), 339 (1),

P. Tuchinda et al. / Tetrahedron 58 (2002) 8073-8086

С	$\delta_{ m H}$								
	9	10	11	12	15				
1	2a, 2b, 5, 19a, 19b	2a, 2b, 5, 19a, 19b	2a, 2b, 5, 19a, 19b	2a, 2b, 5, 19a, 19b	2a, 2b, 5, 19a, 19b				
2	1a, 1b	1a, 1b	1a, 1b	1a, 1b	1a, 1b, 19a				
3	1a, 1b, 2a, 2b, 5, 28, 29	1a, 1b, 2a, 2b, 5, 28, 29	1a, 1b, 2a, 2b, 28, 29	1a, 1b, 2a, 2b, 28 (w)	1a, 1b, 2a, 2b, 3-OMe				
4	2b, 5, 28, 29	2b, 5, 28, 29	5, 28, 29	5, 6b (w), 28, 29	5, 6b, 28, 29				
5	1a, 1b, 6a, 6b, 7a, 7b, 19a, 19b, 28, 29	1a, 1b, 6a, 6b, 7a, 7b, 19a, 19b, 28, 29	1a, 1b, 6a, 7b, 19a, 19b, 28, 29	1a, 1b, 6a, 7a, 7b, 19a, 19b, 28, 29	19a, 19b				
6	5, 7a, 7b, 8	5, 7a, 7b, 8	5, 8	5, 7a, 7b, 8	5, 8				
7	5, 6a, 6b, 8	5, 6a, 6b, 8	5, 8	5, 6a, 6b, 8	5, 8				
8	6a, 6b, 7a, 7b, 11a, 11b, 15, 19a, 19b, 30	6a, 6b, 7a, 7b, 11a, 11b, 15a, 15b, 19a, 19b, 30	6a (w), 7a, 7b, 11b, 19a, 19b, 30	6a (w), 7a, 7b, 15, 19a, 19b, 30	6a, 7a, 11b, 15, 19a, 19b 30				
9	5, 7a, 7b, 8, 11a, 11b, 19a, 19b	1b (w), 5, 7a, 7b, 8, 11a, 11b, 12, 19a, 19b	7b, 8, 11a, 11b, 12, 19a, 19b	1a, 1b, 7a, 7b, 8, 11a, 11b, 12, 19a, 19b	1a, 1b, 7a, 7b, 8, 11a, 11b, 12, 19a, 19b				
10	1a, 1b, 2a, 2b, 5, 6a, 6b, 8, 11a, 11b, 19a, 19b	1a, 1b, 2a, 2b, 5, 6a, 6b, 8, 11a, 11b, 19a, 19b	1a, 1b, 2a, 2b, 8, 11a, 19a, 19b	1a, 1b, 2a, 2b, 5, 6a, 6b, 8, 11a	1a, 1b, 2a, 2b, 5, 6a, 19a, 19b				
11	8, 12, 19a, 19b	8, 12, 19a, 19b	8, 11b, 12, 19a, 19b	8, 12, 19a, 19b	8, 12, 19a, 19b				
12	11a, 11b, 17, 18	11a, 11b, 15a, 15b, 17, 18	11a, 11b, 18	11a, 11b, 18	11a, 11b, 18				
13	8, 11a, 11b, 12, 15, 16a, 16b, 18, 30	8, 12, 15a, 15b, 18, 30	11b, 12, 16a, 16b, 17, 18, 30	8, 12, 15, 18, 30	8, 12, 15, 18, 30				
14	8, 12, 16a, 16b, 17, 30	8, 11a, 11b, 12, 15a, 15b, 17, 18, 30	7a, 7b, 8, 12, 17, 18, 30	7b, 8 (w), 12, 15, 17, 18, 30	8, 12, 15, 17, 18, 30				
15	8, 16a, 16b, 30	8, 17 (w)	16b, 30	8, 30	8, 30				
16	15, 17, 21	15a, 15b, 17, 20	15	15, 17	15, 17, 20				
17	12, 15, 16a, 16b, 18, 21, 30 (w)	12, 15a, 15b, 18, 20, 21, 22a, 22b	12, 18, 21	12, 15, 18, 20, 21, 22a, 22b	12, 15, 18, 21, 22a, 22b				
18	12, 17	12, 17	12, 17	12, 17	12, 17				
19	1a, 1b, 5, 8, 11a, 11b	1a, 1b, 5, 8, 11a, 11b	1a, 5, 8, 11a, 11b	1a, 1b, 5, 8, 11a, 11b	1b, 5, 11a, 11b				
20	16a, 16b, 17, 21, 22a, 22b	17, 21, 22a, 22b	21, 22a, 22b	17, 21, 22a, 22b	17, 21, 22a				
21	20, 22a, 22b	17, 20, 22a, 22b	20, 22a, 22b	17, 20, 22a, 22b	20, 22a				
22	21	20, 21, 24	21	17, 20, 21	20, 21, 22				
23	22a, 22b, 24, 25	21, 22a, 22b, 24, 25	22a, 22b, 24	22a, 22b, 24, 26 (w), 27	22a, 22b, 26 (w), 27 (w)				

22b, 26, 27

26, 27

24, 27

24, 26

29

5.28

8,15

Table 5	Observed HMBC	correlations in	compounds 9)_12 and 14	(in CDCl _a)
Lable S.	Observed minibe	conciacions in	compounds y	-12 and 1.	$(III \cup U \cup U_{12})$

w=weak correlation.

24

25

26

27

28

29

30

3-OMe

22a, 22b, 26, 27

24, 26, 27

24, 25, 27

24, 25, 26

5,29

5,28

15

313 (1), 299 (1), 269 (1), 233 (1), 203 (1), 185 (2), 177 (2), 161 (2), 147 (3), 135 (5), 125 (15), 98 (24), 91 (15), 83 (100), 69 (21), 55 (62). Anal. calcd for C₃₀H₄₄O₃: C, 79.60; H, 9.80. Found: C, 79.49; H, 9.61.

25, 26, 27

24, 26, 27

24, 25, 27

24, 25, 26

2a, 2b, 5, 28

8, 15a, 15b

5,29

5.3.3. Methyl 3,4-seco-cycloart-4(28),24-diene-29hydroxy-23-oxo-3-oate (3). Colorless semi-solid. $[\alpha]_{589}^{31} =$ +58.7 (c 0.8; CHCl₃). UV (EtOH) λ_{max} nm (log ε): 237 (4.16). IR (CHCl₃) ν_{max} : 3483 (O–H stretching of alcohol), 1729 (C=O stretching of ester), 1681 (C=O stretching of conjugated ketone), 1615 (C=C), 1438, 1379, 1358, 1282, 1228, 1170, 1041, 904 cm⁻¹. ¹H and ¹³C NMR: see Table 1. COSY correlations H/H: 1a/1b, 2a, 2b; 1b/1a, 2a, 2b; 2a/2b, 1a, 1b; 2b/1a, 1b, 2a; 5/6a, 6b, 19a, 19b; 6a/5, 6b, 7a, 7b; 6b/5, 6a, 7a, 7b; 7a/6a, 6b, 7b, 8; 7b/6a, 6b, 7a, 8; 8/7a, 7b, 19a, 19b, 30; 11a/11b, 12, 19a, 19b; 11b/11a, 12, 19b; 12/11a, 11b, 18; 15/16a, 16b; 16a/15, 16b, 17; 16b/15, 16a; 17/16a, 16b; 18/12, 17; 19a/1a, 5, 8, 11a, 19b; 19b/5, 8, 11a, 11b, 19a; 20/21, 22a, 22b; 21/20, 22a, 22b; 22a/20, 21, 22b; 22b/20, 21, 22a; 24/26, 27; 26/24, 27; 27/24, 26; 28a/28b, 29; 28b/28a, 29; 29/28a, 28b; 30/8, 15. HMBC correlations: see Table 2. EIMS (70 eV) m/z (%): 484 [M]⁺ (1), 469 (9), 453 (8), 438 (5), 411 (1), 397 (3), 386 (7), 371 (12), 353 (7), 339 (3), 313 (2), 299 (3), 287 (4), 271 (2), 260 (4), 247 (5), 231 (5), 219 (5), 187 (10), 173 (12), 159 (12), 147 (38), 125 (34), 121 (38), 105 (28), 98 (13), 91 (32), 83 (100), 67 (20), 55 (55), 41 (28). HRFABMS calcd for C₃₁H₄₉O₄ [M+H]⁺ 485.3618, found 485.3621.

(w)

26.27

26, 27

24, 27

24.26

5.29

5.28

8.15

22b (w), 26, 27

26, 27

27

26

29

5,28

8, 15

5.3.4. 5,7,4'-Trihydroxy-3,8-dimethoxyflavone (4). Yellow needles from EtOH, mp 256.9-257.4°C after darkening at 245.1-245.6°C (Lit.²⁶ 259°C after darkening at 248°C, Lit.²⁷ 242–244°C and 254–256°C). IR (KBr) v_{max}: 3424 (O-H stretching), 3227 (O-H stretching), 1656 (C=O stretching of conjugated ketone), 1610, 1555, 1504, 1436, 1365, 1287, 1230, 1172, 1013, 930 cm⁻¹. Anal. calcd for C₁₇H₁₄O₇: C, 61.82; H, 4.27. Found: C, 62.04; H, 4.27. The triacetate 16 crystallized from EtOH as colorless needles, mp 164.9–165.6°C. (Lit.²⁷ 167–168°C).

5.3.5. 5,7,4'-Trihydroxy-3,8,3'-trimethoxyflavone (5). Yellow needles from EtOH; mp 215.4–216.9°C (Lit.²⁶ 217-218°C, Lit.²⁷ 215-217°C, Lit.²⁸ 216-218°C). IR (KBr) ν_{max} : 3367 (O–H stretching), 1651 (C=O stretching) of conjugated ketone), 1595, 1505, 1450, 1380, 1320, 1300, 1209, 1163, 1021, 983, 936 cm⁻¹. The triacetate **17**

Table 6. Observed HMBC correlations in compounds 13A, 13B and 14A, 14B

13A, 13B		14A, 14B				
С	Correlated H	С	Correlated H			
1	2, 5, 19a, 19b	1	2, 5, 19a, 19b			
2	1a, 1b	2	1a, 1b			
3	1a, 1b, 2, 28	3	1a, 1b, 2, 28, 29			
4	5, 28, 29	4	5, 28, 29			
5 (A)	1a, 6a, 28, 29	5	1a, 1b, 6a, 6b, 7a, 7b, 19a, 19b, 28, 29			
5 (B)	1a, 6a, 28, 29					
6	5, 7b, 8 (A), 8 (B)	6	5, 7a, 7b, 8			
7	5, 6a, 6b	7	5, 6a, 6b, 8			
8 (A)	6a, 7b, 19a, 19b	8 (A)	6a, 6b, 7a, 7b, 11b, 15, 19a, 19b, 30 (A)			
8 (B)	6a, 7b, 19a, 19b	8 (B)	6a, 6b, 7a, 7b, 11b, 15, 19a, 19b, 30 (B)			
9	5, 7b, 11b, 19a, 19b	9	5, 7a, 7b, 8, 11a, 11b, 12, 19a, 19b			
10	2, 5, 6a, 11a, 19a, 19b	10	1a, 1b, 2, 5, 6a, 6b, 8, 11a, 19a, 19b			
11	12, 19a, 19b	11	8, 12, 19a, 19b			
12 (A)	11a, 11b, 18 (A)	12	11a, 11b, 17 (A), 17 (B), 18			
12 (B)	11a, 11b, 18 (B)					
13 (A)	11b, 16a, 17 (A), 18 (A), 30	13	8, 12, 15, 18, 30 (A), 30 (B)			
13 (B)	11b, 16a, 17 (B), 18 (B), 30					
14 (A)	17 (A), 18 (A)	14	7a, 12, 15, 17 (A), 17 (B), 18, 30 (A), 30 (B)			
14 (B)	17 (B), 18 (B)					
15 (A)	16a, 16b, 30	15 (A)	8, 12, 17 (A), 30 (A)			
15 (B)	16a, 16b, 30	15 (B)	8, 12, 17 (B), 30 (B)			
16 (A)	15, 17 (A)	16 (A)	15. 17 (A)			
16 (B)	15, 17 (B)	16 (B)	15, 17 (B)			
17(A)	18 (A), 21 (A), 22a, 22b, 30	17 (A)	12, 15, 18, 20, 21 (A), 22a (A), 22b (A)			
17 (B)	$18 (\mathbf{B}) 21 (\mathbf{B}) 22a 22b 30$	$17 (\mathbf{R})$	12, 15, 18, 20, 21 (B), 22a (B), 22b (B) 12, 15, 18, 20, 21 (B), 22a (B), 22b (B)			
18 (A)	12	18(A)	12, 10, 10, 20, 21 (D), 224 (D), 226 (D)			
18 (B)	12	$18 (\mathbf{R})$	$12, 17 (\mathbf{R})$			
19	1a, 1b, 5, 8 (A), 8 (B), 11a, 11b	19	1a 1b 5 8 11a 11b			
20 (A)	21 (A) 22a 22b	20	17 (A) 17 (B) 21 (A) 21 (B) 22a (A) 22a (B) 22b (A) 22b (B)			
20 (R)	$21 (\mathbf{R}), 22a, 22b$ $21 (\mathbf{R}), 22a, 22b$	20	$(\mathbf{r}), (\mathbf{r}), (r$			
20 (b) 21 (A)	22a 22h	21	17 (A) 17 (B) 22a (A) 22a (B) 22b (A) 22 (B)			
21 (R)	22a, 22b	21	$(\mathbf{r}), (\mathbf{r}), (\mathbf{r}), (\mathbf{D}), \mathbf{r}, (\mathbf{D}), \mathbf{r}, \mathbf{r}, (\mathbf{D}), \mathbf{r}, \mathbf{r}, (\mathbf{D}), \mathbf{r}, \mathbf{r}, (\mathbf{D})$			
22 (A)	$21(\mathbf{A})$	22 (A)	$17(\mathbf{A}) = 20(21(\mathbf{A}))$			
22 (R)	21 (R)	22 (R)	$17 (\mathbf{R}), 20, 21 (\mathbf{R})$ $17 (\mathbf{R}), 20, 21 (\mathbf{R})$			
23 (A)	22a 22b 24 (A)	22 (D) 23 (A)	22a(A) 22b(A) 24(A)			
23 (R)	22a, 22b, 24 (R)	23 (R)	$22a (\mathbf{R}), 22b (\mathbf{R}), 24 (\mathbf{R})$			
$23 (\mathbf{D})$ $24 (\mathbf{A})$	22a, 22b, 24 (b) 22b, 26 (A) 27	23 (b) 24	$224 (\mathbf{D}), 220 (\mathbf{D}), 24 (\mathbf{D})$ $26 (\mathbf{A}), 26 (\mathbf{B}), 27$			
24 (R)	220, 20 (R), $2722b, 26 (R), 27$	27	$20 (\mathbf{A}), 20 (\mathbf{D}), 27$			
$24 (\mathbf{D})$ 25 (A)	220, 20 (b), 27 24 (A) 26 (A) 27	25 (A)	$24(\Lambda) = 26(\Lambda) = 27$			
$25(\mathbf{R})$	$24 (\mathbf{R}), 26 (\mathbf{R}), 27$	$25(\mathbf{R})$	24 (R), 26 (R), 2724 (R), 26 (R), 27			
$25(\mathbf{B})$	$24 (\mathbf{b}), 20 (\mathbf{b}), 27$	25 (D) 26	24 (b), 20 (b), 2724 (A), 24 (B), 27			
$20(\mathbf{A})$ 26(B)	$24 (\mathbf{R}), 27$ $24 (\mathbf{R}), 27$	20	24 (A), 24 (B), 27			
20 (B)	24 (D), 27 26 (A) 26 (D)	27 (1)	24(A) 26(A)			
21	20 (A), 20 (D)	$\frac{27}{(A)}$	$24 (\mathbf{A}), 20 (\mathbf{A})$ $24 (\mathbf{B}), 26 (\mathbf{B})$			
28	5 20	27 (1)	$2 + (\mathbf{D}), 20 (\mathbf{D})$ 5 20			
$20(\Lambda)$	5 28	20	5 28			
29 (A) 20 (B)	5 28	29	3, 20			
27 (D) 30	3, 20 8 (A) 8 (B) 15	30 (4)	8 15			
50	o (A), o (D), 13	30 (A) 30 (D)	0, 1J 9, 15			
		50 (D)	0, 1J			

crystallized from EtOH as colorless plates, mp 138.6–139.4°C (Lit.³⁹ mp 138–139°C). HRFABMS calcd for $C_{24}H_{23}O_{11}$ [M+H]⁺ 487.1233, found 487.1244.

5.3.6. 5,7,4'-Trihydroxy-3,6,8-trimethoxyflavone (6). Yellow needles from EtOH, mp 244.1–245.6°C (Lit.²⁶ 244–245°C). UV (MeOH) λ_{max} nm (log ε): 280 (3.20), 332 (3.17). IR (KBr) ν_{max} : 3424 (O–H stretching), 3227 (O–H stretching), 1656 (C=O stretching of conjugated ketone), 1609, 1555, 1504, 1436, 1365, 1287, 1230, 1172, 1012, 930 cm⁻¹. The triacetate **18** crystallized from EtOH as pale yellow needles, mp 158.1–158.9°C (Lit.⁴⁰ 159–160°C). HRFABMS calcd for C₂₄H₂₃O₁₁ [M+H]⁺ 487.1233, found 487.1258. The methylated product **19** crystallized from EtOH as pale yellow needles, mp 130.1–131.5°C (Lit.^{40,41} 130–131°C, Lit.⁴² 131–132°C). **5.3.7. 5,4**′-**Dihydroxy-3,6,7,8-tetramethoxyflavone** (7). Yellow needles from EtOH, mp 226.2–226.6°C (Lit.²⁹ mp 225–226°C). UV (MeOH) λ_{max} nm (log ε): 283 (4.70), 343 (4.73). IR (KBr) ν_{max} : 3222 (O–H stretching), 1648 (C=O stretching of conjugated ketone), 1612, 1575, 1547, 1509, 1481, 1371, 1288, 1207, 1178, 1046, 1004, 920 cm⁻¹. Anal. calcd for C₁₉H₁₈O₈: C, 60.96; H, 4.85. Found: C, 61.21; H, 4.99. The diacetate **20** crystallized from EtOH as pale yellow needles, mp 128.0–129.5°C. The methylated product **19** crystallized from EtOH as pale yellow needles, mp 130.1–131.5°C (Lit.^{40,41} 130–131°C, Lit.⁴² 131–132°C).

5.3.8. 5,3′**-Dihydroxy-3,6,7,8,4**′**-pentamethoxyflavone (8).** Yellow needles from EtOH, mp 171.6–172.2°C (Lit.³¹ 170°C, Lit.³² 169–170°C, Lit.³³ 176–177°C). IR (CHCl₃)

Figure 2. NOSEY correlations of the isolated 1-3 and the modified 9-15.

 ν_{max} : 3546 (O–H stretching), 1647 (C=O stretching of conjugated ketone), 1596, 1561, 1512, 1481, 1463, 1376, 1275, 1249, 1135, 1052, 1006, 981 cm⁻¹. Anal. calcd for C₂₀H₂₀O₉: C, 59.41; H, 4.99. Found: C, 59.61; H, 5.12. The diacetate **21** crystallized from EtOH as pale yellow needles, mp 165.8–166.3°C. The methylated product **22** crystallized from EtOH as pale yellow needles, mp 130.5–131.8°C (Lit.⁴³ 131–132°C).

5.4. Structure modification

5.4.1. Preparation of 5α -cycloart-24,25-dihydro-3,23dione (9). Compound 1 (30.5 mg, 0.097 mmol) in MeOH (4 mL) was hydrogenated in the presence of 10% palladium on carbon catalyst (0.7 mg). The catalyst was filtered, and the filtrate after evaporation and recrystallization from EtOH gave 9 (29.1 mg, 95%) as colorless plates, mp 149.5–

10 R = 0

13A, **13B** $R = H_2$ **14A**, **14B** R = O

151.1°C. $[\alpha]_{589}^{30}$ =+64.0 (*c* 0.05, CHCl₃). IR (CHCl₃) ν_{max} : 1702 (C=O of 6-membered ring ketone and C=O of the side-chain ketone), 1467, 1383, 1366, 1213, 1113, 1008, 916 cm⁻¹. ¹H and ¹³C NMR data see Tables 3 and 4. COSY correlations H/H: 1a/1b, 2a, 2b, 19a; 1b/1a, 2a, 2b, 19b; 2a/1a, 1b, 2a, 29; 2b/1a, 1b, 2a, 28; 5/6a, 6b, 19a, 19b; 6a/5, 6b, 7a, 7b; 6b/5, 6a, 7a, 7b; 7a/6a, 6b, 7b; 7b/6a, 6b, 7a; 8/6b, 7a, 7b; 11a/11b, 12, 19a, 19b; 11b/11a, 12, 19b; 12/11a, 11b; 15/16a, 16b; 16a/15, 16b, 17; 16b/15, 16a, 17; 17/16a, 16b, 18, 20; 18/12, 17; 19a/1a, 5, 11a, 19b; 19b/1b, 5, 11a, 11b, 19a; 20/17, 21, 22a, 22b; 21/20, 22a; 22a/20, 21, 22b, 24; 22b/20, 22a, 24; 24/22a, 25, 26, 27; 25/24, 26, 27; 26/24, 25; 27/24, 25; 28/29; 29/28; 30/8, 15. HMBC correlations: see Table 5. EIMS (70 eV) m/z (%): 440 [M]⁺ (11), 425 (6), 355 (8), 340 (66), 325 (21), 313 (8), 302 (20), 271 (6), 255 (6), 243 (6), 221 (9), 217 (12), 202 (27), 187 (23), 175 (27), 161 (28), 147 (99), 135 (40), 121 (99), 107

Table 7. Cytotoxic and antimitotic activities (ASK assay) of the isolated $1\!-\!8$ and the modified compounds $9\!-\!22$

Compound			ASK assay				
		Cell line					
	P-388	KB	Col-2	BCA-1	Lu-1	ASK	
1	>20	>20	>20	>20	>20	>20	_
2	>20	>20	>20	>20	>20	>20	_
3	3.3	16.4	9.1	10.9	5.8	10.9	_
4	2.4	>20	>20	9.4	>20	16.3	_
5	3.1	14.8	15.7	2.7	13.1	5.9	+
6	13.8	>20	>20	1.2	>20	17.1	_
7	2.7	19.9	>20	4.8	13.0	3.9	_
8	0.05	0.09	8.8	0.63	0.09	0.70	+
9	13.8	>20	>20	>20	>20	>20	_
10	8.8	>20	>20	>20	>20	>20	_
11	>20	12.6	>20	>20	16.6	>20	_
12	1.8	8.7	4.2	13.3	5.9	11.2	_
13	7.3	>20	10.8	15.5	19.3	>20	-
14	>20	>20	>20	>20	>20	>20	-
15	14.0	11.6	9.4	>20	9.1	>20	-
16	5.3	>20	>20	11.7	16.9	13.1	-
17	18.3	>20	>20	>20	>20	>20	-
18	17.5	14.1	14.1	15.7	>20	14.7	-
19	>20	16.8	>20	>20	>20	>20	-
20	10.4	14.8	>20	2.7	11.4	11.1	_
21	0.27	0.06	13.0	0.53	0.49	2.36	+
22	18.1	7.00	>20	>20	>20	>20	-

Cytotoxic assay: $ED_{50} \le 5 \ \mu g/mL$ is considered active; P-388: murine lymphocytic leukemia, KB: human nasopharyngeal carcinoma, Col-2: human colon cancer, BCA-1: human breast cancer, Lu-1: human lung cancer, ASK: rat glioma; +=active; -=inactive.

(56), 105 (51), 95 (45), 93 (41), 85 (57), 79 (29), 67 (35), 57 (100). HRFABMS calcd for $C_{30}H_{49}O_2$ [M+H]⁺ 441.3720, found 441.3716.

5.4.2. Preparation of 5α -cycloart-24,25-dihydro-3,16,23-trione (10). Compound 2 (252.5 mg, 0.56 mmol) in MeOH

(6 mL) was hydrogenated in the presence of 10% palladium on carbon catalyst (5.9 mg). After work-up and recrystallization from EtOH, 10 (243.8 mg, 96%) was obtained as colorless needles, mp 128.1–129.1°C. $[\alpha]_{389}^{30}$ =–58.18 (*c* 0.06, CHCl₃). IR (CHCl₃) ν_{max} : 1727 (C=O of 5-membered ring ketone), 1703 (C=O of 6-membered ring ketone and C=O of saturated ketone in the side chain), 1466, 1417, 1386, 1367, 1245, 1167, 1145, 1114, 976 cm $^{-1}$. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR data: see Tables 3 and 4. COSY correlations H/H: 1a/1b, 2a, 2b, 19a; 1b/1a, 2a, 2b; 2a/1a, 1b, 2b; 2b/1a, 1b, 2a; 5/6a, 6b; 6a/5, 6b, 7a, 7b; 6b/5, 6a, 7a, 7b; 7a/6a, 6b, 7b; 7b/6a, 6b, 7a, 8; 8/7a, 7b; 11a/11b, 12; 11b/11a, 12; 12/11a, 11b; 15a/15b, 30; 15b/15a, 30; 17/18, 20, 21; 18/12, 17; 19a/1a, 19b; 19b/19a; 20/17, 21, 22a, 22b; 21/17, 20, 22a, 22b; 22a/21, 22b; 22b/20, 22a; 24/25, 26, 27; 25/24, 26, 27; 26/24, 25, 27; 27/24, 25, 26; 28/5, 29; 29/28; 30/15a, 15b, 18. HMBC correlations: see Table 5. EIMS (70 eV) m/z(%): 454 [M]⁺ (2), 439 (100), 421 (4), 355 (3), 339 (4), 313 (4), 301 (8), 185 (3), 147 (3), 135 (4), 119 (3), 109 (3), 105 (5), 95 (3), 93 (4), 91 (5), 85 (8), 79 (4), 67 (4), 57 (12), 41 (8). HRFABMS calcd for $C_{30}H_{47}O_3$ [M+H]⁺ 455.3513, found 455.3515.

5.4.3. Reaction of 5α -cycloart-24-ene-3,23-dione (1) with 2.2 equiv. of MCPBA. To a stirred solution of 1 (100 mg, 0.2283 mmol) in anhydrous CH₂Cl₂ (6 mL) was sequentially added MCPBA (85%, 102 mg, 0.5023 mmol, 2.2 equiv.) and anhydrous NaHCO₃ (57.5 mg, 0.6844 mmol, 3 equiv.). The reaction mixture was left stirring at room temperature for 7 h, then diluted with CH₂Cl₂ (15 mL), washed with a 1:1 mixture of 5% Na₂S₂O₃ and 5% NaHCO₃ (3×20 mL) to remove excess MCPBA, and finally with H₂O (3×20 mL). The organic layer was dried with anhydrous Na₂SO₄, filtered and evaporated to dryness to afford a white solid (115.2 mg). Purification by preparative thin-layer chromatography on silica plates (EtOAc/hexane, 1:4)

Table 8. Anti-HIV activities of the isolated 1-8 and the modified 9-22 by syncytium and HIV-1 RT assays

Compound		Anti-syncytium (MC99+1A2)				
	IC ₅₀ (µg/mL)	EC ₅₀ (µg/mL)	TI (IC ₅₀ /EC ₅₀)	Activity	% Inhibition	Activity
1	215	_	_	Ia	12.0	Ι
2	>250	146.2	>1.7	Aa	7.0	Ι
3	<3.9	_	_	Т	99.9	А
4	14.0	<3.9	>3.6	А	35.2	W
5	<3.9	_	_	Т	19.1	Ι
6	41.8	<3.9	>10.7	А	25.2	Ι
7	77.0	<3.9	>19.5	Aa	9.4	Ι
8	<7.8	_	_	Т	15.0	Ι
9	64.1	17.6	3.6	А	19.3	W
10	>125	<3.9	>32.1	Aa	22.0	Ι
11	18.0	6.2	2.9	А	35.8	W
12	<7.8	_	_	Т	12.9	Ι
13	20.5	5.1	4.0	Aa	2.6	Ι
14	>125	_	_	Ia	7.8	Ι
15	12.3	<3.9	>3.1	Aa	13.9	Ι
16	16.4	<3.9	>4.2	Aa	8.3	Ι
17	<3.9	_	_	Т	0	Ι
18	16.8	<3.9	>4.3	Aa	6.0	Ι
19	>125	_	_	Ia	0	Ι
20	6.7	<3.9	>1.7	Aa	0	Ι
21	<3.9	_	_	Т	0	Ι
22	<3.9	-	-	Т	0.8	Ι

Syncytium assay: A=active in the assay for inhibition of syncytium formation by MC99-infected cells, Aa=active in the assay for reduction of syncytium formation by MC99 virus, I=inactive in the syncytium inhibition assay, Ia=inactive in the reduction assay, T=toxic; Radioisotopic RT assay: A=very active (>70% inhibition), M=moderately active (>50–70% inhibition), W=weakly active (30–50% inhibition), I=inactive (<30% inhibition).

afforded heptanolide **11** (40.4 mg, 39%) and a 1:1.2 diastereometric mixture of **13A** and **13B** (25.5 mg, 24%).

The heptanolide 11 was recrystallized from EtOH to give colorless needles, mp 134.8–135.4°C. $[\alpha]_{589}^{30} = +18.3$ (c 0.07, CHCl₃). UV (EtOH) λ_{max} nm (log ϵ): 234 (4.19). IR (CHCl₃) ν_{max} : 1702 (C=O of 7-membered lactone), 1685 (C=O of conjugated ketone), 1616 (C=C), 1446, 1389, 1294, 1225, 1193, 1113, 1103, 1035, 1012, 980 cm⁻¹. ¹H and ¹³C NMR data see Tables 3 and 4. COSY correlations $[\delta_{\rm H}/\delta_{\rm H}$ (H/H)]: 1a/1b, 2a, 2b, 19a, 19b; 1b/1a, 2a, 2b; 2a/1a, 1b, 2b; 2b/1a, 1b, 2a; 5/6a, 6b, 19a, 19b, 28, 29; 6a/5, 6b, 7a, 7b; 6b/5, 6a, 7a, 7b; 7a/6a, 6b, 7b, 8; 7b/6a, 6b, 7a, 8; 8/7a, 7b, 30, 19b; 11a/11b, 12, 19a, 19b; 11b/11a, 12, 19a, 19b; 12/11a, 11b, 18; 15/16a, 16b, 30; 16a/16b, 17; 16b/15, 16a, 17; 17/16a, 16b, 21; 18/12, 17; 19a/1a, 5, 11a, 11b, 19b; 19b/1a, 5, 8, 11a, 11b, 19a; 20/17, 21, 22a, 22b; 21/20, 22a, 22b; 22a/20, 21, 22b; 22b/20, 21, 22a; 24/26, 27; 26/24, 27; 27/24, 26; 28/29; 29/5, 28; 30/8. HMBC correlations: see Table 5. EIMS (70 eV) m/z (%): 454 [M]⁺ (2), 439 (4), 421 (1), 371 (1), 356 (9), 341 (11), 327 (2), 313 (3), 298 (2), 283 (3), 257 (1), 233 (3), 219 (2), 201 (3), 187 (4), 175 (5), 161 (6), 147 (19), 133 (10), 125 (16), 121 (22), 105 (15), 91 (20), 83 (100), 79 (19), 67 (14), 55 (47), 41 (22). HRFABMS calcd for C₃₀H₄₇O₃ [M+H]⁺ 455.3513, found 455.3527.

The mixture of 13A and 13B was obtained as a colorless solid, mp 129.1–130.7°C. $[\alpha]_{589}^{30} = +25.5$ (*c* 0.06, CHCl₃). IR (CHCl₃) ν_{max} : 1703 (C=O of 7-membered lactone and C=O of the side-chain ketone), 1447, 1459, 1390, 1294, 1193, 1114, 1030, 1012, 979 cm⁻¹. ¹H NMR (300 MHz) δ_H: 3.41 (s, H-24 of **A**), 3.34 (s, H-24 of **B**), 2.69 (obsc., H-2), 2.55 (obsc., H-22a) 2.34 (obsc., H-22b), 2.10 (obsc., H-11a), 2.09 (obsc., H-5), 2.08 (obsc., H-20), 1.93 (m, H-16a), 1.81 (obsc., H-1a), 1.80 (obsc., H-6a), 1.69 (obsc., H-17 of A), 1.67 (obsc., H-12), 1.65 (obsc., H-17 of B), 1.52 (m., H-1b), 1.46 (s, H-29), 1.45 (obsc., H-8 of A), 1.44 (s, H-26 of A), 1.43 (obsc., H-8 of B), 1.43 (s, H-26 of B), 1.40 (s, H-28), 1.36 (obsc., H-15), 1.35 (obsc., H-16b), 1.30 (obsc., H-7a), 1.27 (s, H-27), 1.10 (obsc., H-11b), 1.09 (obsc., H-7b), 1.02 (s, H-18 of B), 1.01 (s, H-18 of A), 0.93 (s, H-30), 0.91 (d, J=6.5 Hz, H-21 of **B**), 0.90 (d, J=6.5 Hz, H-21 of **A**), 0.69 (obsc., H-6b), 0.68 (d, J=5.0 Hz, H-19a), 0.62 (d, J=5.0 Hz, H-19b). ¹³C NMR (75 MHz) $\delta_{\rm C}$: 206.89 (C-23 of **B**), 206.70 (C-23 of **A**), 175.43 (C-3), 87.19 (C-4), 65.73 (C-24 of A), 65.61 (C-24 of B), 61.03 (C-25 of A), 60.96 (C-25 of B), 52.32 (C-17 of B), 52.21 (C-17 of A), 49.76 (C-5 of A), 49.75 (C-5 of B), 48.89 (C-14 of B), 48.88 (C-14 of A), 48.67 (C-8 of B), 48.65 (C-8 of A), 48.14 (C-22 of B), 48.09 (C-22 of A), 45.00 (C-13 of A), 44.99 (C-13 of B), 35.65 (C-15 of A), 35.64 (C-15 of B), 35.05 (C-2), 32.85 (C-20 of A), 32.72 (C-12 of A), 32.70 (C-12 of B), 32.44 (C-20 of B), 30.97 (C-28), 30.13 (C-1), 29.56 (C-19), 28.41 (C-16 of A), 28.34 (C-16 of B), 27.24 (C-10), 27.16 (C-11), 26.00 (C-6), 25.32 (C-7), 24.76 (C-26 of B), 24.74 (C-26 of A), 23.08 (C-29 of B), 23.07 (C-29 of A), 22.91 (C-9), 19.47 (C-30), 19.39 (C-21 of A), 19.35 (C-21 of B), 18.51 (C-27), 18.36 (C-18 of A), 18.34 (C-18 of B). COSY correlations H/H: 1a/1b, 2, 19a; 1b/1a, 2; 2/1a, 1b; 5/6a, 6b, 19a, 19b, 29; 6a/5, 7b; 6b/5, 7a; 7a/6b, 8 of A and B; 7b/6a, 8 of A and B; 8 of A and B/7a, 7b, 19b; 11a/11b, 12; 11b/11a, 12; 12/11a, 11b; 15/16a, 16b, 30; 16a/15, 16b, 17 of A and B; 16b/15, 16a, 17 of A and B; 17 of A and B/16a, 16b, 20; 18 of A/12, 17 of A, 30; **18** of **B**/12, 17 of **B**, 30; 19a/1a, 5, 19b; 19b/5, 8 of **A** and **B**, 19a; 20/17 of **A** and **B**, 21 of **A** and **B**, 22a, 22b; 21 of **A**/20, 22a of **A**; 21 of **B**/20, 22a of **B**, 22a/20, 21 of **A** and **B**; 24 of **A**/26 of **A**, 27; 24 of **B**/26 of **B**, 27; 26 of **A**/24 of **A**, 27; 26 of **B**/24 of **B**, 27; 27/24 of **A** and **B**, 26 of **A** and **B**; 28/29; 29/5, 28; 30/8 of **A** and **B**, 15. HMBC correlations see Table 6. EIMS (70 eV) m/z (%): 470 [M]⁺ (2), 455 (5), 430 (4), 397 (4), 383 (8), 365 (15), 356 (39), 341 (41), 329 (11), 327 (18), 313 (19), 283 (16), 269 (15), 253 (12), 241 (18), 233 (26), 213 (27), 201 (31), 189 (32), 187 (42), 175 (58), 173 (60), 161 (72), 147 (100), 141 (9), 133 (75), 121 (80), 107 (70), 99 (8), 93 (76), 91 (75), 79 (59), 67 (29), 55 (20). HRFABMS calcd for C₃₀H₄₆O₄Na [M+Na]⁺ 493.3282, found 493.3259.

5.4.4. Reaction of 5α -cycloart-24-ene-3,16,23-trione (2) with 2.2 equiv. of MCPBA. According to the procedure described in Section 5.4.3, compound 2 (100 mg, 0.2212 mmol) in anhydrous CH₂Cl₂ (6 mL) was reacted with MCPBA (85%, 98.8 mg, 0.4867 mmol, 2.2 equiv.) and anhydrous NaHCO₃ (55.8 mg, 0.6637 mmol, 3 equiv.). After left stirring at room temperature for 7 h and usual work-up, a white solid (108.9 mg) was obtained. Purification by preparative thin-layer chromatography on silica plates (EtOAc/CH₂Cl₂/hexane, 3:1:6 as eluent) afforded heptanolide 12 (45.9 mg, 44%) and a 1:1.3 diastereomeric mixture of heptanolide–epoxides 14A/14B (25.7 mg, 24%).

The heptanolide 12 was recrystallized from EtOH to give colorless needles, mp 117.8–119.0°C. $[\alpha]_{589}^{30} = -48.6$ (c 0.07, CHCl₃). UV (EtOH) λ_{max} nm (log ε): 231 (4.19). IR (CHCl₃) ν_{max} 1727 (C=O of 5-membered ring ketone), 1702 (C=O of 7-membered lactone), 1687 (C=O of conjugated ketone), 1618 (C=C), 1542, 1447, 1389, 1293, 1225, 1116, 1101, 980 cm⁻¹. ¹H and ¹³C NMR data: see Tables 3 and 4. COSY correlations H/H: 1a/1b, 2a, 2b, 19a; 1b/1a, 2a, 2b, 19b; 2a/1a, 1b, 2b; 2b/1a, 1b, 2a; 5/6a, 6b, 29; 6a/5, 6b, 7a, 7b; 6b/5, 6a, 7a, 7b; 7a/6a, 6b, 7b, 8; 7b/6a, 6b, 7a, 8; 8/7a, 7b; 11a/11b, 12, 19a; 11b/11a, 12; 12/11a, 11b; 15/17, 30; 17/15, 18, 21; 18/12, 17, 30; 19a/1a, 5, 11a, 11b, 19b; 19b/1a, 5, 8, 11b, 19a; 20/17, 21, 22a, 22b; 21/17, 20, 22a, 22b; 22a/20, 21, 22b; 22b/20, 21, 22a; 24/26, 27; 26/24, 27; 27/24, 26; 28/29; 29/5, 28; 30/8, 15. HMBC correlations: see Table 5. EIMS (70 eV) m/z (%): 468 [M]⁺ (8), 453 (63), 397 (19), 371 (8), 355 (8), 339 (10), 234 (6), 135 (10), 125 (23), 105 (13), 98 (16), 91 (17), 83 (100), 69 (17), 55 (41), 41 (17). HRFABMS calcd for $C_{30}H_{45}O_4$ [M+H]⁺ 469.3306, found 469.3313.

The mixture of **14A** and **14B** was obtained as a colorless solid, mp 200.0–201.5°C. $[\alpha]_{3}^{3}_{89}=+10$ (*c* 0.06, CHCl₃). IR (CHCl₃) ν_{max} 1725 (C=O of 5-membered ring ketone), 1706 (C=O of 7-membered lactone and C=O of the sidechain ketone), 1459, 1447, 1389, 1293, 1245, 1187, 1115, 1101, 1033, 980 cm⁻¹. ¹H NMR (300 MHz) δ_{H} : 3.49 (s, H-24 of **A**), 3.44 (s, H-24 of **B**), 3.34 (dd, *J*=17.3, 2.5 Hz, H-22a of **A**), 3.29 (dd, *J*=17.3, 2.9 Hz, H-22a of **B**), 2.72 (m, H-2), 2.52 (dd, *J*=17.3, 11.2 Hz, H-22b of **A**), 2.50 (dd, *J*=17.3, 11.6 Hz, H-22b of **B**), 2.38 (m, H-20), 2.29 (d, *J*=9.1 Hz, H-17 of **B**), 2.27 (d, *J*=9.1 Hz, H-17 of **A**), 2.23 (m, H-11a), 2.12 (dd, *J*=12.7, 5.3 Hz, H-5), 2.04 (br s, H-15), 1.88 (obsc., H-12), 1.85 (obsc., H-6a), 1.84 (obsc., H-1a), 1.56 (obsc., H-1b), 1.54 (obsc., H-8), 1.47 (s, H-29), 1.45 (s, H-26 of A), 1.44 (s, H-26 of B), 1.42 (s, H-28), 1.30 (obsc., H-7a), 1.29 (s, H-27), 1.24 (obsc., H-11b), 1.20 (obsc., H-7b), 1.16 (s, H-18), 1.12 (s, H-30 of **B**), 1.11 (s, H-30 of A), 1.00 (d, J=6.2 Hz, H-21 of B), 0.99 (d, J=6.2 Hz, H-21 of A), 0.73 (d, J=4.9 Hz, H-19a), 0.71 (obsc., H-6b), 0.69 (d, J=4.9 Hz, H-19b). ¹³C NMR (75 MHz) δ_C: 219.10 (C-16 of **A**), 219.04 (C-16 of **B**), 205.78 (C-23 of B), 205.58 (C-23 of A), 175.15 (C-3), 86.92 (C-4), 65.57 (C-24), 60.96 (C-25 of B), 60.89 (C-25 of A), 60.54 (C-17 of **B**), 60.49 (C-17 of **A**), 50.98 (C-15 of **A**), 50.95 (C-15 of **B**), 49.62 (C-5), 47.96 (C-8 of **B**), 47.94 (C-8 of A), 46.83 (C-22 of B), 46.80 (C-22 of A), 44.72 (C-14), 42.02 (C-13), 34.92 (C-2), 31.41 (C-12), 30.94 (C-28), 29.84 (C-1 and C-19), 27.70 (C-10), 26.76 (C-11), 26.67 (C-20), 25.67 (C-6), 25.60 (C-7), 24.71 (C-26), 23.03 (C-29), 22.19 (C-9), 20.33 (C-21), 19.77 (C-30 of B), 19.75 (C-30 of A), 19.02 (C-18 of A), 18.97 (C-18 of B), 18.40 (C-27 of B), 18.16 (C-27 of A). COSY correlations H/H: 1a/1b, 2, 5, 19a; 1b/1a, 2, 19a, 19b; 2/1a, 1b; 5/1a, 6a, 6b, 19b, 29; 6a/5, 6b, 7a, 7b; 6b/5, 6a, 7a, 7b; 7a/6a, 6b, 7b, 8; 7b/6a, 6b, 7a, 8; 8/7a, 7b, 15; 11a/11b, 12, 19a; 11b/11a, 12; 12/11a, 11b, 18; 15/8, 17 of A and B, 30; 17 of A/15, 18, 20, 21 of A; 17 of **B**/15, 18, 20, 21 of **B**; 18/12, 17 of **A** and **B**; 19a/1a, 1b, 5, 8, 11a, 11b, 19b; 19b/1a, 1b, 5, 8, 11b, 19a; 20/17 of A and B, 21 of A and B, 22a of A and B, 22b of A and B; 21 of A/20, 22a of A, 22b of A; 21 of B/20, 22a of B, 22b of B; 22a of A/20, 21 of A, 22b of A; 22a of B/20, 21 of B, 22b of B; 22b of A/20, 21 of A, 22a of A; 22b of B/20, 21 of B, 22a of B; 24 of A/26 of A, 27; 24 of B/26 of B, 27; 26 of A/24 of A, 27; 26 of **B**/24 of **B**, 27; 27/24 of **A** and **B**, 26 of **A** and **B**; 28/5, 29; 29/5, 28; 30 of A and B/8, 15. HMBC correlations: see Table 6. EIMS (70 eV) m/z (%): 484 [M]⁺ (8), 469 (9), 451 (6), 426 (2), 413 (11), 397 (100), 355 (6), 339 (25), 311 (3), 287 (7), 259 (5), 243 (4), 229 (8), 203 (5), 191 (11), 178 (24), 161 (10), 139 (15), 119 (21), 105 (21), 91 (26), 83 (33), 69(55), 55(37), 43(63). HRFABMS calcd for $C_{30}H_{44}O_5Na$ [M+Na]⁺ 507.3075, found 507.3072.

5.4.6. Methanolysis of heptanolide 12. A solution of heptanolide 12 (50 mg, 0.1068 mmol) in dry methanol (2 mL) was added dropwise to a stirred mixture of NaOMe (6.34 mg, 0.1177 mmol, 1.1 equiv.) in dry MeOH (6 mL) at 0°C. The reaction mixture was left stirring at room temperature for 6 h and then acidified with 2N HCl until the pH \sim 6.5–7.0. After dilution with water (50 mL) and extraction with CH_2Cl_2 (3×20 mL), the combined organic layer was washed with water (3×50 mL), dried over anhydrous Na₂SO₄, filtered and evaporated to dryness to give a white semi-solid (48.2 mg). Purification by preparative thin-layer chromatography on silica plates, eluting with EtOAc-hexane (1:4) gave the hydroxy-ester 15 (42.6 mg, 80% yield) as a semi-solid. $[\alpha]_{589}^{30} = -59.5$ (*c* 0.39, CHCl₃). UV (EtOH) λ_{max} nm (log ε): 235 (5.57). IR (CHCl₃) ν_{max} : 3492 (O-H stretching), 1727 (C=O of ester and 5membered ring ketone), 1684 (C=O of conjugated ketone), 1618 (C=C), 1447, 1387, 1292, 1244, 1187, 1173, 1116, 1101, 1053, 1035, 979 cm⁻¹. ¹H and ¹³C NMR see Tables 3 and 4. COSY correlations H/H: 1a/1b, 2a, 2b; 1b/1a, 2a, 2b; 2a/1a, 1b, 2b; 2b/1a, 1b, 2a; 5/6a, 6b, 19a, 19b, 28; 6a/5, 6b, 7a, 7b; 6b/5, 6a, 7a, 7b; 7a/6a, 6b, 7b, 8; 7b/6a, 6b, 7a, 8; 8/7a, 7b, 15; 11a/11b, 12, 19a, 19b; 11b/11a, 12, 19b; 12/11a, 11b, 18; 15/8, 17, 30; 17/15, 18, 21; 18/12, 17; 19a/1b, 5, 11a, 19b; 19b/1b, 5, 11a, 19a; 20/21, 22a, 22b;

21/17, 22a, 22b; 22a/20, 21, 22b; 22b/20, 21, 22a; 24/26, 27; 26/24, 27; 27/24, 26; 28/29; 29/5, 28; 30/12, 15. HMBC correlations: see Table 5. EIMS (70 eV) m/z (%): 501 [M+H]⁺ (3), 482 (5), 467 (16), 453 (45), 427 (51), 422 (8), 397 (19), 371 (27), 355 (8), 339 (14), 299 (6), 271 (3), 233 (8), 177 (11), 147 (8), 125 (26), 91 (17), 83 (100), 73 (24), 59 (42), 43 (16). HRFABMS calcd for C₃₁H₄₉O₅ [M+H]⁺ 501.3567, found 501.3603.

Acknowledgements

We wish to acknowledge the financial support from the National Research Council of Thailand (NRCT). We also thank the Higher Education Development Project: Postgraduate Education and Research Program in Chemistry and the Thailand Research Fund (TRF) through a Senior Scholar Award to V. R. for the partial support. W. P. is grateful to the Institutional Strengthening Program, Faculty of Science, Mahidol University, for providing a research scholarship.

References

- Smitinand, T. *Thai Plant Names*; Pra Cha Chon Co., Ltd: Bangkok, 2001; Revised edition by The Forest Herbarium, Royal Forest Department, pp 248–249.
- Woo, W. S.; Lee, E. B.; Shin, K. H.; Kang, S. S.; Chi, H. J. Korean J. Pharmacogn. 1981, 12, 153–170.
- Mbela, T. K. M.; Shabani, M.; Dieyi, S.; Cimanga, K.; Moswa, L. *Fitoterapia* 1992, 63, 179–181.
- 4. Jain, S. P. Int. J. Crude Drug Res. 1989, 27, 29-32.
- 5. El-Hamidi, A. Planta Med. 1970, 18, 278–280.
- 6. Croft, K. D.; Tu'Ipulotu, P. S. Pac. J. Nat. Sci. 1980, 1, 45-47.
- 7. Nayar, S. L. Bull. Natl Inst. Sci. India 1955, 4, 137-145.
- Lu, R. F.; Aeng, Y. R.; Wang, W. C. Sheng Chih Yu Bi Yun 1981, 12, 16–18.
- Takase, H.; Imanishi, K.; Miura, O.; Yumioka, E.; Watanabe, H. Jpn. J. Pharmacol. 1989, 49, 301–308.
- Laurens, A.; Mboup, S.; Tignokpa, M.; Sylla, O.; Masquelier, J. *Pharmazie* **1985**, *40*, 482–485.
- Hussain, M. M.; Sokomba, E. N.; Shok, M. Int. J. Pharmacogn. 1991, 29, 94–100.
- 12. Manson, D. J. Malaria Inst. India 1939, 2, 85-93.
- Silva, G. L.; Gil, R. R.; Cui, B.; Chai, H.; Santisuk, T.; Srisook, E.; Reutrakul, V.; Tuchinda, P.; Sophasan, S.; Sujarit, S.; Upatham, S.; Lynn, S. M.; Farthing, J. E.; Yang, S.-L.; Lewis, J. A.; O'Neill, M. J.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. *Tetrahedron* 1997, 53, 529–538.
- 14. Achenbach, H.; Frey, D. Phytochemistry 1992, 31, 4263-4274.
- Davies, N. W.; Miller, J. M.; Naidu, R.; Sotheeswaran, S. Phytochemistry 1992, 31, 159–162.
- Furlan, M.; Roque, N. F.; Filho, W. W. Phytochemistry 1993, 32, 1519–1522.
- 17. Kikuchi, M.; Yoshikoshi, A. Chem. Lett. 1972, 725-728.
- Sun, H.-D.; Qui, S.-X.; Lin, L.-Z.; Wang, Z.-Y.; Lin, Z.-W.; Pengsuparp, T.; Pezzuto, J. M.; Fong, H. H. S.; Cordell, G. A.; Farnsworth, N. R. J. Nat. Prod. 1996, 59, 525–527.

8086

- Liu, J.-S.; Huang, M.-F.; Ayer, W. A.; Bigam, G. *Tetrahedron Lett.* 1983, 24, 2355–2358.
- Raldugin, V. A.; Kukina, T. P.; Yaroshenko, N. I.; Pentegora, V. A. *Khim. Prir. Soedin.* **1987**, *2*, 306–307.
- 21. Chen, Y.; Lin, Z.; Zhang, H.; Sun, H. *Phytochemistry* **1990**, 29, 3358–3359.
- 22. Tan, R.; Xue, H.; Li, L.-N. Planta Med. 1991, 57, 87-88.
- Chen, G.-F.; Li, Z.-L.; Pan, D.-J.; Tang, C.-M.; He, X.; Xu, G.-Y.; Chen, K.; Lee, K.-H. J. Nat. Prod. 1993, 56, 1114–1122.
- Cabrera, G. M.; Gallo, M.; Seldes, A. M. J. Nat. Prod. 1996, 59, 343–347.
- Atta-ur-Rahman; Nasir, H.; Asif, E.; Ali, S. S.; Iqbal, Z.; Choudhary, M. I.; Clady, J. *Tetrahedron* 1992, 48, 3577–3584.
- 26. Roitman, J. N.; James, L. F. Phytochemistry 1985, 24, 835-848.
- Ghisalberti, E. L.; Jefferies, P. R.; Stacey, C. I. Aust. J. Chem. 1967, 20, 1049–1053.
- Wang, Y.; Hamburger, M.; Gueho, J.; Hostettmann, K. Phytochemistry 1989, 28, 2323–2327.
- Gupta, S. R.; Seshadri, T. R.; Sood, G. R. *Phytochemistry* 1973, 12, 2539–2540.
- El-Ansari, M. A.; Barron, D.; Abdalla, M. F.; Saleh, N. A. M.; Le Quéré, J. L. *Phytochemistry* **1991**, *30*, 1169–1173.
- Lichius, J. J.; Thoison, O.; Montagnac, A.; Pais, M.; Gueritte-Voegelein, F.; Sevenet, T.; Cosson, J.-P.; Hadi, A. H. A. J. Nat. Prod. 1994, 57, 1012–1016.
- Wollenweber, E.; Stern, S.; Roitman, J. N.; Yatskievych, G. Phytochemistry 1989, 28, 303–305.

- Shi, Q.; Chen, K.; Li, L.; Chang, J.-J.; Autry, C.; Kozuka, M.; Konoshima, T.; Estes, J. R.; Lin, C. M.; Hamel, E.; McPhail, A. T.; McPhail, D. R.; Lee, K.-H. *J. Nat. Prod.* **1995**, *58*, 475–482.
- Likhitwitayawuid, K.; Angerhofer, C. K.; Cordell, G. A.; Pezzuto, J. M.; Ruangrungsi, N. J. Nat. Prod. 1993, 56, 30–38.
- Tan, G. T.; Pezzuto, J. M.; Kinghorn, A. D.; Hughes, S. H. J. Nat. Prod. 1991, 54, 143–154.
- Nara, P. L.; Hatch, W. C.; Dunlop, N. M.; Roeby, W. G.; Arthur, L. O.; Gonda, M. A.; Fischinger, P. J. *AIDS Res. Hum. Retrovir.* 1987, *3*, 283–302.
- Kiser, R.; Makovsky, S.; Terpening, S. J.; Liang, N.; Clayton, D. A. J. Virol. Methods 1996, 58, 99–109.
- Tuchinda, P.; Pohmakotr, M.; Reutrakul, V.; Thanyachareon, W.; Sophasan, S.; Yoosook, C.; Santisuk, T.; Pezzuto, J. M. *Planta Med.* 2001, 67, 572–575.
- Horie, T.; Tsukayama, M.; Kawamura, Y.; Seno, M. J. Org. Chem. 1987, 52, 4702–4709.
- Herz, W.; Anderson, G. D.; Wagner, H.; Maurer, G.; Maurer, I.; Flores, G.; Farkas, L. *Tetrahedron* **1975**, *31*, 1577–1581.
- Herz, W.; Anderson, G. D.; Wagner, H.; Maurer, G.; Flores, G.; Farkas, L. *Tetrahedron Lett.* **1973**, *28*, 2571–2572.
- Rashid, M. A.; Armstrong, J. A.; Gray, A. I.; Waterman, P. G. *Phytochemistry* 1992, 31, 1265–1269.
- Martino, V. S.; Ferraro, G. E.; Coussio, J. D. *Phytochemistry* 1976, 15, 1086–1087.